Contribution ID: 110 Type: not specified

Sample-based distance-approximation for subsequence-freeness

Thursday, July 13, 2023 4:50 PM (20 minutes)

Dana Ron and Omer Cohen Sidon

Abstract: In this work, we study the problem of approximating the distance to subsequence-freeness in the sample-based distribution-free model. For a given subsequence (word) $w = w_1 \dots w_k$, a sequence (text) $T = t_1 \dots t_n$ is said to contain w if there exist indices $1 \le i_1 < \dots < i_k \le n$ such that $t_{i_j} = w_j$ for every $1 < i \le k$.

Otherwise, T is w-free. Ron and Rosin (ACM TOCT 2022) showed that the number of samples both necessary and sufficient for one-sided error testing of subsequence-freeness in the sample-based distribution-free model is $\Theta(k/\epsilon)$.

Denoting by Dist(T,w,p) the distance of T to w-freeness under a distribution $p:[n] \to [0,1]$, we are interested in obtaining an estimate wDist, such that $|wDist - Dist(T,w,p)| \le \delta$ with probability at least 2/3, for a given distance parameter δ . Our main result is an algorithm whose sample complexity is $\tilde{O}(k^2/\delta^2)$. We first present an algorithm that works when the underlying distribution p is uniform, and then show how it can be modified to work for any (unknown) distribution p. We also show that a quadratic dependence on $1/\delta$ is necessary.

Presenter: SIDON, Omer Cohen **Session Classification:** Track A-3