Contribution ID: 22 Type: not specified

Searching for Regularity in Bounded Functions

Tuesday, July 11, 2023 10:30 AM (20 minutes)

Michael Whitmeyer and Siddharth Iyer

Abstract: Given a bounded function f on \mathbb{F}_2^n , this work seeks a large affine subspace \mathcal{U} such that f, when restricted to

calU, has small nontrivial Fourier coefficients.

It is not hard to see that a random function is such that all its Fourier coefficients are extremely small already, so we focus on a natural class structured functions.

For the natural class of Fourier degree d functions $f: \mathbb{F}_2^n \to [-1,1]$, we show that there exists an affine subspace of dimension at least $\tilde{\Omega}(n^{1/d!}k^{-2})$, wherein all of f's nontrivial Fourier coefficients become smaller than 2^{-k}

To complement this result, we show the existence of degree d functions with coefficients larger than $2^{-d \log n}$ when restricted to any affine subspace of dimension larger than $\Omega(dn^{1/(d-1)})$. In addition, we give explicit examples of functions with analogous but weaker properties.

Along the way, we provide multiple characterizations of the Fourier coefficients of functions restricted to subspaces of \mathbb{F}_2^n that may be useful in other contexts. Finally, we highlight applications and connections of our results to parity kill number and affine dispersers.

Presenter: WHITMEYER, Michael **Session Classification:** Track A-4