Contribution ID: 40 Type: not specified

On Range Summary Queries

Tuesday, July 11, 2023 3:30 PM (20 minutes)

Peyman Afshani, Pingan Cheng, Aniket Basu Roy and Zhewei Wei

Abstract: We study the query version of the heavy hitter and approximate quantile problems.

In the former problem, the input is a parameter ε , and a set P of n points in \mathbb{R}^d

where each point is assigned a color from a set C and the goal is to

build a structure such that given any geometric range γ ,

we can efficiently find a list of heavy hitters in $\gamma \cap P$,

i.e., colors that appear at least $\varepsilon |\gamma \cap P|$ times in $\gamma \cap P$

as well as their approximate frequencies with an additive error of $\varepsilon | \gamma \cap P |$.

In the latter problem, each point is assigned a weight from a totally ordered universe

and the query must output a sequence S of $1/\varepsilon$ weights

such that the *i*-th weight in S has approximate rank $i\varepsilon |\gamma \cap P|$, meaning,

rank $i\varepsilon|\gamma\cap P|$ up to an additive error of $\varepsilon|\gamma\cap P|$.

Previously, optimal results were only known for the 1D version of the problem [WY11] but

a few sub-optimal methods were available in higher dimensions [AW17, ACH+12].

We study the problems for two important classes of geometric ranges: 3D halfspace and 3D dominance queries.

It is known that many other important queries can be reduced to these two, namely,

1D interval stabbing or interval containment,

2D three-sided queries, 2D circular as well as 2D k-nearest neighbors queries.

We consider the real RAM model of computation where integer registers of size w bits,

 $w = \Theta(\log n)$, are also available.

For dominance queries, we show optimal solutions for both heavy hitter and approximate

quantile problems: using linear space, we can answer both queries in time $O(\log n + 1/\varepsilon)$.

Note that as the output size is $\frac{1}{\varepsilon}$, after investing the initial $O(\log n)$ searching time,

our structure takes on average O(1) time to find a heavy hitter or a quantile!

For more general halfspace heavy hitter queries, the same optimal query time can be achieved by increasing

space by an extra $\log_w \frac{1}{\varepsilon}$ (resp. $\log\log_w \frac{1}{\varepsilon}$) factor in 3D (resp. 2D). By spending extra $\log^{O(1)} \frac{1}{\varepsilon}$ factors in both time and space,

we can also support quantile queries.

We remark that it is hopeless to achieve a similar query bound for dimensions 4 or higher unless significant advances are made in the data structure side of theory of geometric approximations.

Presenter: CHENG, Pingan

Session Classification: Track A-3