Es gibt eine anstehende geplante Wartung des ZIM am 27.11.1024 ab 16:00 Uhr, die diesen Dienst beeinträchtigt: Details hier.

Jul 10 – 14, 2023
Heinz Nixdorf MuseumsForum (HNF)
Europe/Berlin timezone

Quantum Algorithms and Lower Bounds for Linear Regression with Norm Constraints

Jul 13, 2023, 10:30 AM
20m
Seminar Room 1+2 (HNF)

Seminar Room 1+2

HNF

Speaker

Ronald de Wolf

Description

Yanlin Chen and Ronald de Wolf

Abstract: Lasso and Ridge are important minimization problems in machine learning and statistics. They are versions of linear regression with squared loss where the vector $\theta\in\mathbb{R}^d$ of coefficients is constrained in either $\ell_1$-norm (for Lasso) or in $\ell_2$-norm (for Ridge). We study the complexity of quantum algorithms for finding $\epsilon$-minimizers for these minimization problems. We show that for Lasso we can get a quadratic quantum speedup in terms of $d$ by speeding up the cost-per-iteration of the Frank-Wolfe algorithm, while for Ridge the best quantum algorithms are linear in $d$, as are the best classical algorithms. As a byproduct of our quantum lower bound for Lasso, we also prove the first classical lower bound for Lasso that is tight up to polylog-factors.

Presentation materials

There are no materials yet.