Es gibt eine anstehende geplante Wartung des ZIM am 27.11.1024 ab 16:00 Uhr, die diesen Dienst beeinträchtigt: Details hier.

Jul 10 – 14, 2023
Heinz Nixdorf MuseumsForum (HNF)
Europe/Berlin timezone

An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

Jul 14, 2023, 12:10 PM
20m
Seminar Room 1+2 (HNF)

Seminar Room 1+2

HNF

Speaker

Shyan Akmal

Description

Shyan Akmal and Ce Jin

Abstract: Our work concerns algorithms for a variant of \textsf{Maximum Flow} in unweighted graphs. In the All-Pairs Connectivity (APC) problem, we are given a graph G on n vertices and m edges, and are tasked with computing the size of a minimum st-cut in G for all pairs of vertices (s,t). Significant algorithmic breakthroughs have recently shows that over undirected graphs, APC can be solved in n^{2+o(1)} time, which is essentially optimal. In contrast, the true time complexity of APC over directed graphs remains open: this problem can be solved in O(m^ω) time, where ω ∈ (2, 2.373) is the exponent of matrix multiplication, but no matching conditional lower bound is known.

Following [Abboud et al., ICALP 2019], we study a bounded version of APC called the k-Bounded All Pairs Connectivity (k-APC) problem. In this variant of APC, we are given an integer k in addition to the graph G, and are now tasked with reporting the size of a minimum st-cut only for pairs (s,t) of vertices with min-cut value less than k (if the min st-cut has size at least k, we just can report it is "large" instead of computing the exact value).

Our main result is an O((kn)^ω) time algorithm for k-APC in directed graphs.
This is the first algorithm which solves k-APC faster than the more general APC for all k ≥ 3. This runtime is essentially O(n^ω) for all k ≤ poly(log n), which essentially matches the optimal runtime for the k=1 case of k-APC}, under popular conjectures from fine-grained complexity. Previously, this runtime was only known for k ≤ 2 in general [Georgiadis et al., ICALP 2017], and for k ≤ o((log n)^{1/2}) in the special case of directed acyclic graphs [Abboud et al., ICALP 2019]. Our result employs the same algebraic framework used in previous work, introduced by [Cheung, Lau, and Leung, FOCS 2011]. A direct implementation of this framework involves inverting a large random matrix. Our faster algorithm for k-APC is based off the insight that it suffices to invert a low-rank random matrix instead of a generic random matrix, which yields a speed-up.

We also obtain a new algorithm for a variant of k-APC, the k-Bounded All-Pairs Vertex Connectivity (k-APVC) problem, where we now report the sizes of minimum vertex-cuts instead of edge-cuts. We show how to solve k-APVC in O(k^2n^ω) time. Previous work gave an O((kn)^ω) algorithm for this problem [Abboud et al., ICALP 2019], so our algorithm is faster if ω > 2.

Presentation materials

There are no materials yet.