Es gibt eine anstehende geplante Wartung des ZIM am 27.11.1024 ab 16:00 Uhr, die diesen Dienst beeinträchtigt: Details hier.

Jul 10 – 14, 2023
Heinz Nixdorf MuseumsForum (HNF)
Europe/Berlin timezone

Sample-based distance-approximation for subsequence-freeness

Jul 13, 2023, 4:50 PM
20m
Seminar Room 5 (HNF)

Seminar Room 5

HNF

Speaker

Omer Cohen Sidon

Description

Dana Ron and Omer Cohen Sidon

Abstract: In this work, we study the problem of approximating the distance to subsequence-freeness in the sample-based distribution-free model. For a given subsequence (word) $w = w_1 \dots w_k$, a sequence (text) $T = t_1 \dots t_n$ is said to contain $w$ if there exist indices $1 \leq i_1 < \dots < i_k \leq n$ such that $t_{i_{j}} = w_j$ for every $1 \leq j \leq k$.
Otherwise, $T$ is $w$-free. Ron and Rosin (ACM TOCT 2022) showed that the number of samples both necessary and sufficient for one-sided error testing of subsequence-freeness in the sample-based distribution-free model is $\Theta(k/\epsilon)$.

Denoting by $Dist(T,w,p)$ the distance of $T$ to $w$-freeness under a distribution $p :[n]\to [0,1]$, we are interested in obtaining an estimate $wDist$, such that $|wDist - Dist(T,w,p)| \leq \delta$ with probability at least $2/3$, for a given distance parameter $\delta$. Our main result is an algorithm whose sample complexity is $\tilde{O}(k^2/\delta^2)$. We first present an algorithm that works when the underlying distribution $p$ is uniform, and then show how it can be modified to work for any (unknown) distribution $p$. We also show that a quadratic dependence on $1/\delta$ is necessary.

Presentation materials

There are no materials yet.